Regular Local Sample Survey-based Monitoring for Food Security and Child Nutrition

Stephen Haslett
Systemetrics Research Associates / Massey University
New Zealand
s.j.haslett@massey.ac.nz
Abstract

Rapid, frequent, local monitoring of food security and child nutrition is a requirement for good food aid allocation in a changing environment. Resources are however an issue, so that efficient survey designs that will also provide sound subpopulation estimates can have considerable benefit. This talk looks at the survey design used by the UN World Food Programme (WFP) in Nepal. Their plan is to implement a similar sampling scheme in other of the fifty or so countries in which they operate, to improve the sampling efficiency and free up scarce monitoring resources.

Key Words: composite estimation, correlation patterns, repeated sample surveys, rotation sampling, survey design.
1. **Introduction**

- The UN World Food Programme (WFP) in Nepal has been monitoring food security for over ten years.

- Field surveillance capacity consists of a database management system (e-WIN) and an integrated electronic data collection from field staff.

- Used satellite with modem collection, and more recently uses tablet and internet connection.

- The system allows rural, field-based household food security monitoring and analysis in near real-time.
• The survey design has evolved in line with changing information requirements.

• In 2010, probability sampling was introduced to give better representation of seasonality and geographical area, subject to the continuing to limit the survey to essentially rural areas.

• However in 2010 and 2011 no estimates of accuracy were calculated.
A complete sample re-design was done in 2011 to improve estimates of quarterly and annual change, and to provide measures of accuracy (i.e. standard errors).

Increased accuracy was achieved by use of rotation sampling, which divided the sample into four nationally-based subgroups in each quarter, resampling after initial selection in the following quarter, the following year and the following year plus one quarter.

In each quarter, one new rotation group is introduced and one dropped, so that the four rotation groups sampled in each quarter have been in the sample 1, 2, 3 and 4 times respectively.

This type of household survey design, which WFP intends extending to and implementing in other countries in which it provides food aid, will be used to illustrate the methodology of using rotation sampling for repeated regular monitoring of food security and child nutrition.
2. Rotation sampling

- Rotation sampling was first proposed in the 1940s by Jessen (1942) and developed for more than two periods by Patterson (1950).
- It has been in use internationally since the 1960’s.
• Rotation sampling gains its extra accuracy for estimating quarterly and annual change in comparison with a new sample each period by dividing the sample into groups each of which reflects the sample and the population as a whole.

• At each time point, one or more rotation groups are introduced and stay in the sample for a fixed number of periods (or rotate in and out of the sample over a fixed period), while other(s) are dropped.

• The patterning of inclusion and exclusion is carefully controlled, so that if annual as well as quarterly change estimates are of interest for a quarterly survey, then rotation groups will not be finally dropped until six quarters after their introduction to the sample.
• Because there is generally a relatively high positive correlation over time for variables collected from households within each rotation group, time series correlation is the source of the method’s efficiency.

• The method is particularly good when estimating changes between time periods (usually quarterly or annually, but also monthly for monthly surveys), so has considerable potential for monitoring.

• Rotation schemes also generally involve somewhat less fieldwork than choosing a completely new sample each period, since fieldwork staff return to a number of households that have already been visited.

• The method can also to some extent mitigate the long term response fatigue associated with cross-sectional / panel surveys, since in rotation designs respondents stay in the survey only for a limited number of periods.

• Checking whether those who have been in the survey one, two, three, four times differ on average is one method of monitoring whether there is any bias due to the design.
3. Further background

- Until end-2010, the NeKSAP system collected some 4,000 household observations annually.
- The data include a variety of thematic areas such as food security, market situation, water and sanitation, and migration patterns.
- In 2010 a child nutrition module, which collects data on Infant and Young Child Feeding (IYCF) indicators, was introduced in collaboration with Helen Keller International (HKI).
- The data collected through the system has been used by different thematic stakeholders for purposes other than food security, such as nutrition (HKI, Ministry of Health and Population), education (RIDA, UNICEF, Ministry of Education) and child protection (UNICEF).
- The food security monitoring and analysis system (NeKSAP) is currently being institutionalised into the Nepal government system.
4. NeKSAP re-design

- The revision of the sample design at the end of 2011 involved two main parts:
 1. Modularising and supplementing the questionnaire.
 2. Redesigning the sample to improve estimates of quarterly and annual change & provide measures of accuracy.

- The 2011 redesign also considered alignment with the 2010 Nepal Living Standards Survey (NLSS-III), to compare findings from NeKSAP and NLSS-III for rural Nepal, and track changes over time using NLSS-III as a baseline.
In the 2011 NeKSAP redesign’s rotation sampling scheme there are four rotation groups in the sample in every quarter.

- Each rotation groups contains the same primary sampling units (psu) / clusters / wards and the same household in every quarter in which it is included.

- Resampling for a rotation group after initial selection is in the following quarter, and in the same quarters in the following year.

- In each quarter, one new rotation group is introduced and one dropped.

- This means that the four rotation groups sampled in each quarter have been in the sample 1, 2, 3 and 4 times respectively, with the exception of the initial period.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotation groups for repeated NeKSAP quarterly survey
The intent was to retain as many features of the 2010 design as possible:

• For ease of implementation on a tight time line.

• Because the number of field monitors and their location place limitations on feasible designs.
Sample frame:
2011 Nepal Census of Housing and Population

<table>
<thead>
<tr>
<th>STRATUM</th>
<th>Stratum number</th>
<th>Total wards</th>
<th>Total households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain East, Central and West</td>
<td>1</td>
<td>2671</td>
<td>222950</td>
</tr>
<tr>
<td>Mountain Far-West</td>
<td>2</td>
<td>1035</td>
<td>85463</td>
</tr>
<tr>
<td>Mountain Mid-West</td>
<td>3</td>
<td>1206</td>
<td>70685</td>
</tr>
<tr>
<td>Rural Hills Central</td>
<td>4</td>
<td>4167</td>
<td>623773</td>
</tr>
<tr>
<td>Rural Hills East</td>
<td>5</td>
<td>3554</td>
<td>330001</td>
</tr>
<tr>
<td>Rural Hills Far-West</td>
<td>6</td>
<td>1863</td>
<td>152698</td>
</tr>
<tr>
<td>Rural Hills Mid-West</td>
<td>7</td>
<td>2925</td>
<td>323449</td>
</tr>
<tr>
<td>Rural Hills West</td>
<td>8</td>
<td>5553</td>
<td>561469</td>
</tr>
<tr>
<td>Rural Terai Central</td>
<td>9</td>
<td>5289</td>
<td>753383</td>
</tr>
<tr>
<td>Rural Terai East</td>
<td>10</td>
<td>3429</td>
<td>671594</td>
</tr>
<tr>
<td>Rural Terai Mid-West and Far-West</td>
<td>11</td>
<td>1583</td>
<td>420836</td>
</tr>
<tr>
<td>Rural Terai West</td>
<td>12</td>
<td>1974</td>
<td>341027</td>
</tr>
</tbody>
</table>
For the 2012 NeKSAP re-design:

• Wards (i.e. psu / clusters) within strata were selected with probability proportional to the number of households they contain, based on the provisional results of the 2011 Nepal Census of Housing and Population.

• Equal numbers of households were selected in each sampled ward.
• There are four rotation groups in the sample in every quarter.

• Each rotation group contains two wards its (psu) per stratum, making a total sample size of $12 \times 4 \times 2 = 96$ psu per quarter. Each rotation group of the twenty rotation groups in total for a five year period needs two clusters / wards / psu sampled per stratum, making 40 psu to be sampled per stratum for all 20 rotation groups combined.

• With 10 households sampled with equal probability within wards, this gives a sample of $96 \times 10 = 960$ households a quarter, and 3840 households per year, with $24 \times 9 \times 10 = 2160$ different households, since there are nine different rotation groups used each year.

• For each variable of interest (e.g. Food Consumption Score – FCS) the estimate from each rotation group in each quarter is calculated separately, along with its estimate of accuracy (i.e. standard error) in a way that allows for the stratification and clustering.

• The effective sample size is increased relative to a new sample of 960 household every quarter because of the correlation over time for each rotation group.

• It is this correlation that improves estimates of change, since the rotation pattern retains each rotation group for two successive quarters, drops it, and then re-introduces it for exactly the same quarters in the following year.
5. Estimation

• Combining the estimates uses a linear model, i.e. least squares, in a way that accounts for the correlation between the results from the same rotation group in different quarters.

• Estimates of level and change between quarters or years all come from the fitting of this model. The model provides one overall estimate of level or change by combining the estimates from all sampled rotation groups up to the current time.
The simplest and earliest example of a rotation sampling scheme is in Jessen (1942), who used two time periods with equal sample sizes in each.

The sample selected in the first period contains some but not all of units selected in the second period.

Rotation Groups for simple repeated survey

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Rows denote rotation groups, 1, 2 & 3; columns denote times 1 & 2. Rotation group 1 is the unmatched units at time 1, rotation group 2 is the matched units at times 1 & 2, rotation group 3 is the unmatched units at time 2.
- Consider one variable collected in the survey (or derived from it) at both times one and two, and let us find the best estimate of the means β_1 and β_2 at times one or two, and of the difference between the two time periods, $\beta_1 - \beta_2$.

- The sample does not need to be a simple random sample (srs).

- If it is not a srs, then means must be computed as weighted means based on inverse of selection probability, so must correlations, and u and m must be replaced by their effective sample sizes u^* and m^* from the complex design used.
Let \(\bar{Y}_{ui} \) = mean of unmatched units in time period \(i \), with sampling error \(e_{ui} \), for \(i=1,2 \)

\(\bar{Y}_{mi} \) = mean of matched units in time period \(i \), with sampling error \(e_{mi} \), for \(i=1,2 \)

\(\rho \) = correlation between matched units at times 1 & 2

\(\beta_i \) = parameter of interest at time \(i \), for \(i=1,2 \).

\(u \) = number of unmatched units at times 1 and 2

\(m \) = number of matched units at times 1 and 2

\(n \) = sample size at each of times 1 and 2, so that \(n=u+m \)

\(S^2 \) = the common population variance.
Then in matrix notation

\[
\begin{pmatrix}
Y_u \\
Y_m \\
Y_{u2} \\
Y_{m2}
\end{pmatrix}
= \begin{pmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2
\end{pmatrix}
+ \begin{pmatrix}
e_{u1} \\
e_{m1} \\
e_{u2} \\
e_{m2}
\end{pmatrix}
\]

or more compactly

\[Y = X\beta + e\] \hspace{1cm} (1)

Now the variance of \(Y\) is given by

\[
\text{var}(Y) = \Sigma = S^2
\begin{pmatrix}
1/u & 0 & 0 & 0 \\
0 & 1/m & 0 & \rho/m \\
0 & 0 & 1/u & 0 \\
0 & \rho/m & 0 & 1/m
\end{pmatrix}
\]
The best linear unbiased estimate (BLUE) of β is

$$\hat{\beta} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y$$ \hspace{1cm} (2)

with

$$\text{var}(\hat{\beta}) = (X^T \Sigma^{-1} X)^{-1}$$ \hspace{1cm} (3)

Change between periods is estimated by pre-multiplying $\hat{\beta}$ by the vector $(1 \hspace{0.5cm} -1)$.
• The situation for the NeKSAP rotation scheme is a little more complicated.

• However, the same principles still apply, as do the numbered equations (1) to (3) once the relevant matrices have been suitably redefined.
6. Results

Table 3: Food security situation and outlook.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnali</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Far-Western Hill and Mountain</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Rapti-Bheri Hills</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Western Terai</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Central & Eastern Terai</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Western Hill and Mountain</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Central Hill and Mountain</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
<tr>
<td>Eastern Hill and Mountain</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
<td>![chart icon]</td>
</tr>
</tbody>
</table>

Classification key: See the next page for more detailed classification explanation

Generally food secure
Highly food insecure
Moderately food insecure
Humanitarian emergency / famine
Severely food insecure

• Survey data from the NeKSAP redesign can be used to estimate change from quarter-to-quarter and year-to-year.

• Although local estimates are calculated, standard errors recommend caution.

• Quarterly reports are published by WFP in its Nepal Food Security Bulletin.
References

References cont.
